Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lai-Jin Tian,* Feng-Yang Yu,

 Yu-Xi Sun and Xi-Cheng LiuDepartment of Chemistry, Qufu Normal University, Qufu 273165, Shandong, People's Republic of China

Correspondence e-mail: laijintian@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.037$
$w R$ factor $=0.091$
Data-to-parameter ratio $=17.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Tris(2-methyl-2-phenylpropyl)(2-phthalimido-acetato- κO)tin(IV)

The Sn atom of the title compound, $\left[\mathrm{Sn}\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{4}\right)\right]$, is four-coordinate and possesses a distorted tetrahedral geometry.

Comment

N-Phthaloylglycine, whose crystal structure has been reported (Feeder \& Jones, 1996), is a protected amino acid. The crystal structures of several triorganotin esters containing the ligand have revealed some interesting features (Ng et al., 1990, 1994; Ng \& Kumar Das, 1997; Lo et al., 1997). In triphenyltin N phthaloylglycinate, six molecules are bridged by carboxylate groups to form a cyclic hexamer (Ng et al., 1990). In the tricyclohexyltin analogue, the molecules are linked into a helical chain through amido-O atoms (Ng \& Kumar Das, 1997). In aquatributyltin N-phthaloylglycinate (Ng et al., 1994) and aqua(p-chlorophenyl)diphenyltin N-phthaloylglycinate (Lo et al., 1997), the Sn atoms exist in a distorted trigonalbipyramidal geometry, with a coordinated water molecule occupying an axial site.

(I)

In the title compound, (I), the Sn atom is four-coordinate and possesses a distorted tetrahedral geometry (Fig. 1). The $\mathrm{Sn} \cdots \mathrm{O} 1$ separation of 3.055 (2) \AA indicates there is a weak interaction between these atoms, which distorts the tetrahedral geometry. The monodentate mode of coordination of N-phthaloylglycinate is reflected in the disparate $\mathrm{C} 1-\mathrm{O} 1$ and $\mathrm{C} 1-\mathrm{O} 2$ bond lengths of 1.211 (3) and 1.293 (3) \AA, respectively. The $\mathrm{Sn}-\mathrm{C}$ distances lie within the narrow range of 2.140 (3)-2.158 (3) A (Table 1) and are in agreement with values reported in related structures, such as the phenoxyacetate (Bao et al., 1998), pyridine-3-carboxylate (Tian, Sun, Yang \& Yang, 2005) and 3,5-dinitrobenzoate (Tian, Yu et al., 2005) salts of tris(2-methyl-2-phenylpropyl)tin, and bis[tris(2-methyl-2-phenylpropyl)tin(IV)] phthalate (Tian, Sun, Yang \&

Received 3 January 2006
Accepted 6 February 2006

Figure 1
The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
$\mathrm{Ng}, 2005$). The $\mathrm{Sn}-\mathrm{O}$ bond length in (I) is similar to that found in the carboxylate structures mentioned above.

Experimental

Bis[tris(2-methyl-2-phenylpropyl)tin] oxide ($1.05 \mathrm{~g}, 1 \mathrm{mmol}$) and N phthaloylglycine ($0.41 \mathrm{~g}, 2 \mathrm{mmol}$) in toluene (50 ml) were refluxed for 5 h with azeotropic removal of water via a Dean-Stark trap. The resulting clear solution was evaporated under reduced pressure. The white solid obtained, (I), was purified by recrystallization from methanol, and crystals of (I) were obtained from a chloroformhexane ($1: 1, v / v$) solution by slow evaporation at 298 K (yield 80.6%, m.p. 386-387 K). Analysis, found: C 66.26, H 6.09, N 1.97%; calculated for $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{Sn}$: C 66.50, H 6.28, N 1.94%. IR (KBr disc): $\nu_{\mathrm{as}}\left(\mathrm{CO}_{2}\right) 1672, v_{\mathrm{s}}\left(\mathrm{CO}_{2}\right) 1321 \mathrm{~cm}^{-1}$.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{NO}_{4}\right)\right]$	$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=722.46$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=10.0019(12) \AA$	rell parameters from 5308
$b=10.9043(13) \AA$	$\theta=2.2-25.7^{\circ}$
$c=33.233(4) \AA$	$\mu=0.75 \mathrm{~mm}^{-1}$
$\beta=96.101(2)^{\circ}$	$T=295(2) \mathrm{K}$
$V=3604.0(7) \AA^{3}$	Block, colourless
$Z=4$	$0.19 \times 0.18 \times 0.18 \mathrm{~mm}$
Data collection	
Bruker SMART APEX area-	7409 independent reflections
\quad detector diffractometer	6457 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.024$
Absorption correction: multi-scan	$\theta_{\text {max }}=26.5^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-12 \rightarrow 12$
$T_{\text {min }}=0.871, T_{\text {max }}=0.877$	$k=-13 \rightarrow 13$
26020 measured reflections	$l=-41 \rightarrow 41$

```
Mr}=722.4
Monoclinic, P2 / c
a=10.0019 (12) A
b=10.9043 (13) \AA
c=33.233(4) A
\beta=96.101 (2)
V=3604.0 (7) \AA \AA
```


Data collection

Bruker SMART APEX area-
detector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS: Bruker, 2002)
26020 measured reflections
$D_{x}=1.331 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5308 reflections
$\theta=2.2-25.7^{\circ}$
$\mu=0.75 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colourless
$0.19 \times 0.18 \times 0.18 \mathrm{~mm}$

7409 independent reflections
6457 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=26.5^{\circ}$
$k=-13 \rightarrow 13$
$l=-41 \rightarrow 41$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0427 P)^{2}\right. \\
& \quad+1.4856 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.68 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.59 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right.$).

$\mathrm{Sn} 1-\mathrm{O} 2$	$2.0720(18)$	$\mathrm{Sn} 1-\mathrm{C} 21$	$2.140(3)$
$\mathrm{Sn} 1-\mathrm{C} 11$	$2.150(3)$	$\mathrm{Sn} 1-\mathrm{C} 31$	$2.158(3)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{C} 11$	$102.83(10)$	$\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{C} 21$	$117.99(11)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{C} 21$	$102.59(10)$	$\mathrm{C} 11-\mathrm{Sn} 1-\mathrm{C} 31$	$114.70(11)$
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{C} 31$	$102.15(10)$	$\mathrm{C} 21-\mathrm{Sn} 1-\mathrm{C} 31$	$113.59(12)$

H atoms were placed in calculated positions and refined in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms, $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms, and $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for methylene H atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Natural Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

References

Bao, M., He, Q.-L., Liu, B.-D., Xing, Y. \& Liu, Y.-H. (1998). Chin. J. Inorg. Chem. 14, 114-117.
Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Feeder, N. \& Jones, W. (1996). Acta Cryst. C52, 913-919.
Lo, K. M., Ng, S. W. \& Kumar Das, V. G. (1997). Acta Cryst. C53, 545-546.
Ng, S. W. \& Kumar Das, V. G. (1997). Acta Cryst. C53, 546-548.
Ng, S. W., Kumar Das, V. G., Pelizzi, G. \& Vitali, F. (1990). Heteroatom Chem. 1, 433-438.
Ng, S. W., Kuthubutheen, A. J., Kumar Das, V. G., Linden, A. \& Tiekink, E. R. T. (1994). Appl. Organomet. Chem. 8, 37-42.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tian, L.-J., Sun, Y.-X., Yang, M. \& Ng, S. W. (2005). Acta Cryst. E61, m74-m75.
Tian, L.-J., Sun, Y.-X., Yang, M. \& Yang, G.-M. (2005). Acta Cryst. E61, m1346-m1347.
Tian, L.-J., Yu, F.-Y., Sun, Y.-X. \& Zhang, B. (2005). Acta Cryst. E61, m1537m1538.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

